5 Método de Elementos Finitos

5.1 Introdução

O método de elementos finitos é o método de discretização utilizado na simulação numérica do compressor *bp*, que é o objeto desta Dissertação, para se obterem as freqüências naturais, os modos de vibração, a dinâmica do rotor e sua resposta em freqüência. Portanto se discorrerá sobre o tema neste Capítulo.

O principais constituintes do Método de Elementos Finitos para a solução de um Problema de Valor de Contorno são:

– A Formulação Fraca do Problema.

_

- Funções Interpolantes.

5.2 Formulação Fraca

Parte-se da **formulação forte** para se chegar à **formulação fraca**. Considere-se um exemplo unidimensional de um problema de valor de contorno, dado pela equação 5-1:

$$-\frac{d(p(x)\frac{du}{dx})}{dx} + q(x)u = f(x)$$
(5-1)

sendo as funções u, p, q, f definidas no intervalo [0 1]. As condições de contorno são dadas por:

$$u(0) = 0; \frac{d(u)}{dx}(1) = 0$$
(5-2)

A forma mais simples deste problema é para p(x) = 1 e q(x) = 0,

$$\frac{d^2u}{dx^2} + f(x) = 0 (5-3)$$

Supondo-se que f tenha energia finita:

$$\int_0^L (f(x))^2 dx < \infty \tag{5-4}$$

O espaço de funções que satisfaz à equação 5-4 é denotado por \mathcal{H}^0 , sendo o índice sobrescrito o número requerido de derivadas com energia finita para a função f. Neste caso f não precisa de derivada com energia finita. u por sua vez pertence ao espaço de funções denotado por \mathcal{H}^2_C , significando que a segunda derivada de u deve ter energia finita, ou seja:

$$\int_{0}^{1} (\frac{d^2 u}{dx^2})^2 < \infty \tag{5-5}$$

O índice subscrito, C, refere-se às condições de contorno u(0) = 0 e u'(L) = 0.

O problema da equação 5-3 com as condições de contorno 5-5 é conhecido como **formulação forte**

Partindo-se de uma formulação forte para uma **formulação fraca** são necessários dois passos:

1. Produto interno da equação 5-3 com w

$$\langle \frac{d^2 u(x)}{dx^2}, w \rangle + \langle f, w \rangle = 0$$
(5-6)

Sendo w uma função teste. A equação 5-6 também pode ser escrita como:

$$\int_{0}^{1} \frac{d^2 u(x)}{dx^2} w(x) dx + \int_{0}^{1} f(x) w(x) dx = 0$$
 (5-7)

2. Integração por partes da equação 5-7. Lembrando-se que: $\int_0^1 u dv = uv \Big|_0^1 - \int_0^1 v du$:

$$\int_0^1 \frac{du}{dx} \frac{dw}{dx} dx - w \frac{du}{dx} \Big|_0^1 = \int_0^1 fw dx \iff \int_0^1 \frac{du}{dx} \frac{dw}{dx} dx = \int_0^1 fw dx \quad (5-8)$$

A função teste deve satisfazer à condição de contorno essencial, u(0) = 0, mas <u>não precisa</u> satisfazer à condição de contorno natural u'(1) = 0.

- Uma vantagem da **formulação fraca** é que a exigência quanto às derivadas da função u é de 1^a ordem, enquanto que na formulação forte u precisa ser ter derivada de 2^a ordem. Portanto $u \in w$ peretencem ao espaço denotado por \mathcal{H}_E^1 , onde E refere-se às condições de contorno essenciais.
- Dado um problema na formulação fraca, caso não haja como obter uma resposta analítica, deve-se aproximar u, da seguinte forma $(a_i$ coeficientes determinados por condições suplementares, ϕ_i , funções linearmente independentes):

$$u_N(x) = \sum_{i=1}^{N} a_i \phi_i(x)$$
 (5-9)

Esta aproximação gera um erro:

$$u(x) = u_N(x) + \underbrace{\sum_{i=N+1}^{\infty} a_i \phi_i(x)}_{erro_N}$$
(5-10)

Reescrevendo-se a equação 5-8 com a aproximação:

$$\int_{0}^{1} \frac{u_N(x)}{dx} \frac{dw(x)}{dx} - \int_{0}^{1} f(x)w(x)dx = \int_{0}^{1} \frac{d(erro_N(x))}{dx} \frac{dw(x)}{dx}dx$$
(5-11)

A função teste, w, será aproximada por $\psi_1, \psi_2, \ldots, \psi_N$.

Assim como ϕ_i , estas funções são LI.

Substituindo-se a aproximação 5-9 na equação 5-11 chega-se a:

$$a_{i} \int_{0}^{1} \frac{d\phi_{i}(x)}{dx} \frac{d\psi_{i}(x)}{dx} - \int_{0}^{1} f\psi_{i}(x)dx = \int_{0}^{1} \frac{d(erro_{N}(x))}{dx} \frac{\psi_{i}(x)}{dx}dx$$
(5-12)

Quer-se obter funções teste, w, que sejam ortogonais ao erro. Assim sendo,

$$\int_0^1 \frac{d(erro_N(x))}{dx} \frac{dw(x)}{dx} dx = 0$$
(5-13)

5.3 Método de Galerkin

A equação 5-12 passa a ser:

$$a_i \int_0^1 \frac{d\phi_i(x)}{dx} \frac{d\psi_i(x)}{dx} - \int_0^1 f\psi_i(x) dx = 0$$
 (5-14)

O método de Galerkin impõe que as funções-teste e aproximantes sejam idênticas, ou seja, $\psi_i = \phi_i$. A equação 5-15 mostra a formulação resultante após a aplicação do **Método de Galerkin** no problema da equação 5-1

$$a_i \int_0^1 \frac{d\phi_i(x)}{dx} \frac{d\phi_i(x)}{dx} - \int_0^1 f\phi_i(x) dx = 0$$
 (5-15)

5.4 Problemas de Barras

Barra	Configuração	Formulação Fraca	C.C. Essencial
Livre-Livre		$\begin{split} \int_{0}^{L}\rho A\frac{\partial^{2}u}{\partial t^{2}}(x,t)\psi(x)dx + \int_{0}^{L}EA\frac{\partial u}{\partial x}(x,t)\frac{d\psi}{dx}(x)dx \\ &= \int_{0}^{L}f(x,t)\psi(x)dx \end{split}$	
Fixa-Livre		$\begin{split} \int_0^L \rho A \frac{\partial^2 u}{\partial t^2}(x,t) \psi(x) dx &+ \int_0^L E A \frac{\partial u}{\partial x}(x,t) \frac{d\psi}{dx}(x) dx \\ &= \int_0^L f(x,t) \psi(x) dx \end{split}$	u(0,t) = 0
Fixa-Mola	ke	$\begin{split} \int_0^L \rho A \frac{\partial^2 u}{\partial t^2}(x,t) \psi(x) dx &+ \int_0^L E A \frac{\partial u}{\partial x}(x,t) \frac{d\psi}{dx}(x) dx \\ &+ k_e u(L,t) \psi(L) = \int_0^L f(x,t) \psi(x) dx \end{split}$	u(0,t) = 0
Fixa-Massa	me	$\begin{split} \int_{0}^{L} \rho A \frac{\partial^{2} u}{\partial t^{2}}(x,t) \psi(x) dx &+ \int_{0}^{L} E A \frac{\partial u}{\partial x}(x,t) \frac{d\psi}{dx}(x) dx \\ &+ m_{\epsilon} \psi(L) \frac{\partial^{2} u}{\partial t^{2}}(L,t) = \int_{0}^{L} f(x,t) \psi(x) dx \end{split}$	u(0,t) = 0

Viga	Configuração	Formulação Fraca	C.C. Essenciais
Livre-Livre		$\begin{split} \int_0^L \rho A \frac{\partial^2 u}{\partial t^2}(x,t) \psi(x) dx &+ \int_0^L EI \frac{\partial^2 u}{\partial x^2}(x,t) \frac{d^2 \psi}{dx^2}(x) dx \\ &= \int_0^L f(x,t) \psi(x) dx \end{split}$	
Engastada-Livre	}	$\begin{split} \int_0^L \rho A \frac{\partial^2 u}{\partial t^2}(x,t) \psi(x) dx &+ \int_0^L E I \frac{\partial^2 u}{\partial x^2}(x,t) \frac{d^2 \psi}{dx^2}(x) dx \\ &= \int_0^L f(x,t) \psi(x) dx \end{split}$	$\begin{split} u(0,t) &= 0 \;, \\ \frac{\partial u}{\partial x}(0,t) &= 0 \end{split}$
Engastada-Mola	ke X	$\begin{split} \int_0^L \rho A \frac{\partial^2 u}{\partial t^2}(x,t) \psi(x) dx &+ \int_0^L EI \frac{\partial^2 u}{\partial x^2}(x,t) \frac{d^2 \psi}{dx^2}(x) dx \\ &+ k_e u(L,t) \psi(L) = \int_0^L f(x,t) \psi(x) dx \end{split}$	$\begin{split} u(0,t) &= 0 , \\ \frac{\partial u}{\partial x}(0,t) &= 0 \end{split}$
Engastada-Massa	me	$\begin{split} \int_0^L \rho A \frac{\partial^2 u}{\partial t^2}(x,t) \psi(x) dx &+ \int_0^L EI \frac{\partial^2 u}{\partial x^2}(x,t) \frac{d^2 \psi}{dx^2}(x) dx \\ &+ m_e \frac{\partial^2 u}{\partial t^2}(L,t) \psi(L) = \int_0^L f(x,t) \psi(x) dx \end{split}$	$\begin{split} u(0,t) &= 0,\\ \frac{\partial u}{\partial x}(0,t) &= 0 \end{split}$

c.c.essenciais

c.c.natura is

$$\begin{split} u(0,t) &= 0 \quad ; \qquad V(L,t) = \frac{k_e u}{EI}(L,t) \\ \frac{\partial u}{\partial x}(0,t) &= 0 \quad ; \qquad M(L,t) = 0 \end{split}$$

Condições iniciais:

$$u(x,0) = u_0(x)$$
 $\frac{\partial u}{\partial t}(x,0) = v_0(x)$

Equação da dinâmica de uma viga:

$$\rho(x)A(x)\frac{\partial^2 u}{\partial t^2}(x,t) + \frac{\partial^2}{\partial x^2}\left[E(x)I(x)\frac{\partial^2 u}{\partial x^2}(x,t)\right] = f(x,t)$$

Objetivos:

- Aproximar modos de vibração (MEF);
- Aproximar dinâmica em determinado ponto do sistema (x_0) .

5.7 Formulação Fraca: Viga engastada-mola

$$\int_{0}^{L} \rho A \frac{\partial^{2} u}{\partial t^{2}}(x,t)\psi(x)dx + \int_{0}^{L} EI \frac{\partial^{4} u}{\partial x^{4}}(x,t)\psi(x)dx = \int_{0}^{L} f(x,t)\psi(x)dx$$
$$\forall \psi \in Adm_{4}$$

$$\int_{0}^{L} \rho A \frac{\partial^{2} u}{\partial t^{2}}(x,t)\psi(x)dx + EI\psi \underbrace{\frac{\partial^{3} u}{\partial x^{3}}(L,t)}_{= \frac{ke}{EI}u(L,t)} - EI\underbrace{\psi(0)}_{= 0} \frac{\partial^{3} u}{\partial x^{3}} - EI\underbrace{\frac{\partial^{2} u}{\partial x^{2}}(L,t)}_{= 0} \frac{d\psi}{dx} + EI\frac{\partial^{2} u}{\partial x^{2}}\underbrace{\frac{d\psi(0)}{dx}}_{= 0} + \int_{0}^{L} EI\frac{\partial^{2} u}{\partial x^{2}}(x,t)\frac{d^{2}\psi(x)}{dx^{2}}dx = \int_{0}^{L} f(x,t)\psi(x)dx$$

Formulação Fraca:

$$\int_0^L \rho A \frac{\partial^2 u}{\partial t^2}(x,t)\psi(x)dx + \int_0^L EI \frac{\partial^2 u}{\partial x^2}(x,t)\frac{d^2\psi}{dx^2}(x)dx + k_e u(L,t)\psi(L)$$
$$= \int_0^L f(x,t)\psi(x)dx$$

 $\psi(x) \in Adm_4$

$$Adm_4 = \{\psi: (0,L) \longrightarrow \Re | \psi(0) = 0, \frac{d\psi}{dx}(0) = 0\}$$

$$a(u,\psi) = f(\psi)$$

Considerações:

– Forças externas nulas:
$$a(u, \psi) = 0$$

– $u(x, t) = e^{i\omega t}\phi(x)$

$$\omega^2 \int_0^L \rho A\phi(x)\psi(x)dx = k_e\phi(L)\psi(L) + \int_0^L EI\frac{d^2\phi}{dx^2}(x)\frac{d^2\psi}{dx^2}(x)dx$$

$$\forall \psi \in Adm_4$$

Deseja-se calcular:

$$-\omega_i$$
 - freqüências naturais

 $-~\phi_i$ - modos de vibração

5.8

Método de Elementos Finitos

- Aproximação do domínio;
- Aproximação da solução no domínio aproximado;
- Acoplamento das equações elementares;
- Imposição das condições de contorno;
- Sistema de equações.

5.9

Modos de Vibração: Viga engastada-mola

5.10 Modelo reduzido: Viga engastada-mola

$$\tilde{M}\ddot{U} + \tilde{K}U = \tilde{F}$$

$$u^{N}(x,t) = \sum_{n=1}^{N} \phi_{n}(x)a_{n}(t)$$

$$\underbrace{\int_{0}^{L} \rho A \frac{\partial^{2} u^{N}}{\partial t^{2}}(x,t)\phi_{j}(x)dx}_{op.\ massa} + \underbrace{\int_{0}^{L} EI \frac{\partial^{2} u^{N}}{\partial x^{2}}(x,t) \frac{d^{2}\phi_{j}(x)}{dx^{2}}dx}_{op.\ rigidez} + k_{e}u^{N}(L,t)\phi(L) = \underbrace{\int_{0}^{L} f(x,t)\phi_{j}(x)dx}_{carregamento}$$

$$\int_0^L \rho A \phi_i \phi_j dx \ \ddot{a}_i + k_e \phi_i \phi_j \ a_i + \int_0^L E I \frac{d^2 \phi_i}{dx^2} \frac{d^2 \phi_j}{dx^2} dx \ a_i = \int_0^L f \phi_j dx$$

5.11 Aproximação da dinâmica: Viga engastada-mola

Aproximação com 5 modos (N = 5):

$$\phi^N = \left[\begin{array}{cccc} \phi_1 & \phi_2 & \phi_3 & \phi_4 & \phi_5 \end{array} \right]_{nXN}$$

Define-se: $U = \phi^N q$

$$(\phi^N)^T \tilde{M} \phi^N \ddot{q} + (\phi^N)^T \tilde{K} \phi^N q = (\phi^N)^T \tilde{F}$$

Equação reduzida:

$$M^N \ddot{q} + K^N q = F^N$$

				$f_{i} = \frac{\lambda_{i}^{2}}{2\pi L^{2}} \left(\frac{EI}{m}\right)^{1/2}$		
$\lambda_i = \lambda_i$ (Number of Spans)						
Number Mode Number (i)						
Spans(a)	1	2	3	4	5	6
1	1.875	4.694	7.855	11.00	14.14	17.28
2	1.570	3.923	4.707	7.058	7.842	10.19
3	1.541	3.570	4.283	4.720	6.707	7.430
4	1.539	3.403	3.928	4.450	4.723	6.545
5	1.539	3.316	3.706	4.148	4.538	4.724
6	1.539	3.265	3.563	3.927	4.292	4.592
7	1.539	3.233	3.466	3,767	4,086	4.389
8	1.539	3.213	3.399	3,649	3,926	4.204
9	1.539	3.198	3.349	3,560	3,802	4.051
10	1.539	3.187	3.312	3.492	3,703	3,927
11	1.539	3.179	3.285	3.439	3,624	3.624
12	1.539	3.173	3.263	3.397	3,559	3.739
13	1.539	3.168	3.245	3.362	3.507	3.669
14	1.539	3.165	3.232	3.334	3.463	3.609
15	1.539	3.162	3.221	3.311	3.427	3.559

Figura 5.1: Blevis: Viga Engastada-livre com apoios intermediários

$f_{1} = \frac{\lambda_{1}^{2}}{2\pi L^{2}} \left(\frac{EI}{m}\right)^{1/2}$						
$\lambda_i = \lambda_i$ (Number of Spans)						
Number	Mode Number (i)					
Spans(a)	1	2	3	4	5	6
1	3.142	6.283	9.425	12.57	15,71	18.85
2	3.142	3.927	6.283	7.068	9.424	10.21
3	3.142	3.557	4.297	4.713	6.707	7.430
4	3.142	3.393	3.928	4.463	6.283	6.545
5	3.142	3.310	3.700	4.152	4.550	6.284
6	3.142	3.260	3.557	3.927	4.293	4.602
7	3.142	3.230	3.460	3.764	4.089	4.394
8	3.142	3.210	3.394	3.645	3.926	4.208
9	3.142	3.196	3.344	3.557	3.800	4.053
10	3.142	3,186	3.309	3.488	3.700	3.927
11	3.142	3,178	3.282	3.436	3.621	3.823
12	3.142	3,173	3.261	3.393	3.557	3.738
13	3.142	3.168	3.244	3.359	3.504	3.666
14	3.141	3.164	3.230	3.332	3.460	3.607
15	3.141	3.161	3.219	3.309	3.424	3.557

Figura 5.2: Blevis: Viga bi-apoiada com apoios intermediários